
J
H
E
P
0
6
(
2
0
0
8
)
0
5
2

Published by Institute of Physics Publishing for SISSA

Received: May 5, 2008

Accepted: May 28, 2008

Published: June 13, 2008

The fast life of holographic mesons

Robert C. Myersab and Aninda Sinhaa

aPerimeter Institute for Theoretical Physics,

Waterloo, Ontario N2L 2Y5, Canada
bDepartment of Physics and Astronomy, University of Waterloo,

Waterloo, Ontario, N2L 3G1, Canada

E-mail: rmyers@perimeterinstitute.ca, asinha@perimeterinstitute.ca

Abstract: We use holographic techniques to study meson quasiparticles moving through a

thermal plasma in N = 2 super-Yang-Mills theory, with gauge group SU(Nc) and coupled to

Nf flavours of fundamental matter. This holographic approach reliably describes the system

at large Nc, large ’t Hooft coupling and Nf/Nc ≪ 1. The meson states are destabilized by

introducing a small quark density nq. Spectral functions are used to examine the dispersion

relations of these quasiparticles. In a low-momentum regime, the quasiparticles approach a

limiting velocity which can be significantly less than the speed of light. In this regime, the

widths of the quasiparticles also rise dramatically as their momentum approaches a critical

value qcrit. While the spectral functions do not display isolated resonances for q > qcrit,

the dispersion relations can be extended into this high-momentum regime by studying the

dual quasinormal modes. A preliminary qualitative analysis of these modes suggests that

the group velocity rises to the speed of light for q ≫ qcrit.
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1. Introduction

A large class of strongly coupled gauge theories can be studied using the gauge/gravity

duality [1, 2]. The gauge theories that are currently amenable to study with holographic

techniques are very different from real world QCD, e.g., current calculations are restricted

to large Nc and large ’t Hooft coupling. However, this approach has still proven to be a

fruitful framework with which to gain new insights into the strongly coupled quark-gluon

plasma — see, e.g., [3, 4].

With this aim in mind, holographic techniques have been applied to study the thermal

properties of Nf flavours of fundamental matter in N = 2 SU(Nc) super-Yang-Mills (SYM)

in a quenched approximation (i.e., Nf ≪ Nc) [5 – 8]. The gravity dual for this field theory

consists of Nf probe D7-branes in the black hole background generated by Nc D3-branes.

In this system, the fundamental matter generically undergoes a first order phase transi-

tion at some temperature Tfun . The low-temperature phase of the theory is described by

‘Minkowski embeddings’ of the probe branes (see figure 1) in which the branes sit entirely

outside the black hole [6, 7]. In this phase, the meson spectrum is discrete and exhibits a

mass gap. Above the critical temperature Tfun, the branes are characterised by ‘black hole’

embeddings which extend through the event horizon. In this phase, the meson spectrum

is continuous and gapless [7, 9, 10]. Thus, this large-Nc, strong coupling phase transition

is associated with the dissociation of the mesons. It has been suggested that this physics
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Figure 1: Possible embeddings for probe D7-branes in the background black hole geometry of

D3-branes.

is in qualitative agreement with that of heavy quarkonium in QCD [7]. Studies from lat-

tice QCD [11] suggest that such mesons survive the deconfinement phase transition at

Tdec ∼ 175 MeV and remain as relatively well-defined resonances up to temperatures of

2 − 3Tdec.

Another interesting feature that was discovered for the holographic mesons in the

low temperature phase is that moving through the thermal plasma, at large momentum

they approach a limiting velocity with vlim < 1 [7, 12]. On the gravity side, this can be

understood as the dual excitations travelling at the local speed of light near the minimum

radius reached by the D7-branes. Hence in the field theory, one finds the velocity

vlim =
dx

dt
=
√

−gtt/gxx

∣

∣

∣

ρ=ρmin

(1.1)

Because of the redshift near the black hole horizon, this yields a result which can be much

less than one. As discussed in [12], this result (1.1) can be re-expressed as

v2
lim ≃ 1 − λ2

4

(

T

Mq

)4

. (1.2)

We must note that the limiting speed does not actually represent a ‘speed limit’ for the

mesons. That is, a careful analysis show that the group velocity actually approaches

vlim from above and so the maximum group velocity is actually slightly larger than this

asymptotic value [12]. In any event, the effect that vlim < 1 is somewhat surprising as

one’s naive intuition would be that a meson traveling through the thermal plasma would

eventually reach the speed of light if the energy/momentum is increased to arbitrarily large

values. Hence it appears that this new limiting velocity is a consequence of strong coupling.

As mentioned above in the low temperature phase, the holographic mesons are stable

or rather their widths are suppressed by 1/Nc. Of course, this stands in contrast with the
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Figure 2: D-brane embedding with radial electric field is necessarily a black hole embedding but

the width of the throat is tuneable.

heavy-quark mesons studied in thermal lattice QCD [11] which are quite broad states. In

the black hole phase of the holographic model, the meson excitations are readily absorbed

by the black hole horizon. The quasinormal frequencies of these excitations typically have

Im(ω) ∼ Re(ω) [10] and so the corresponding spectral functions do not reveal any quasi-

particles [9]. However, black hole embeddings can also arise at low temperatures when a

nonzero quark density nq is introduced1 — in fact, these are the only physically consistent

embeddings in this situation [13]. In these backgrounds, the meson states are again unsta-

ble but the width of these states can be tuned by varying nq [14, 15]. Essentially, with a

small nq, the D7-brane extends down to the horizon with a narrow neck (as illustrated in

figure 2) and so the absorption of the meson excitations is limited by the small effective

horizon area of the worldvolume metric. Hence the corresponding spectral functions dis-

play clear quasiparticle states with narrow widths [15]. In this paper, we begin a study of

the dispersion relations of these quasiparticle states.

An overview of the paper is as follows: in section 2 we introduce the D3/D7-brane

framework and review the D7-brane embeddings and thermodynamics. In section 3, we

turn to the calculation of the spectral function for various meson operators. By following

the position and shape of the quasiparticle resonances in the spectral function with growing

momentum, q, we estimate the dispersion relations for the low-lying resonances. With this

approach, the quasiparticles are found to approach the same limiting velocity found for

the case of stable mesons [7, 12].2 Another interesting phenomena is that the widths show

a dramatic increase as the momentum approaches a critical value qcrit. section 4 presents

a qualitative discussion of the quasinormal frequencies using our intuition derived from

casting the relevant radial equation in the form of an effective Schrödinger equation. This

framework gives an alternative point of view from which to understand the effects noted

above. Above qcrit, the spectral functions do not exhibit isolated quasiparticle resonances

1Since the the underlying theory here is supersymmetric, the quark density we consider arises from a

hypermultiplet with both fermions and bosons.
2See also [16].
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and so in section 5, we use the Schrödinger framework to consider the behaviour of the

quasinormal modes in the high-momentum regime q > qcrit. In previous sections, we defined

the limiting velocity vlim by observing the (real part of the) dispersion relation approached

a straight line for large q but in the regime q < qcrit. Here our qualitative analysis suggests

that this definition fails in the regime q ≫ qcrit. Rather the behaviour of the dispersion

relation changes such that ultimately it approaches an asymptotic slope of one in this very

high momentum regime. In section 6, we discuss our results and make a few observations

about future directions. Appendix A provides some details about a WKB calculation of

the quasinormal frequencies using the Schrödinger framework considered in section 4.

2. Holographic framework

Following [6, 7], we write the background metric for Nc black D3-branes in the decoupling

limit as

ds2 =
1

2

(u0ρ

L

)2
[

−f
2

f̃
dt2 + f̃d~x 2

]

+
L2

ρ2

[

dρ2 + ρ2dΩ2
5

]

, (2.1)

where ρ is a dimensionless coordinate and

f(ρ) = 1 − 1

ρ4
, f̃(ρ) = 1 +

1

ρ4
, L4 = 4πgsNcℓ

4
s
. (2.2)

This metric possesses a horizon at ρ = 1 with temperature

T =
u0

πL2
, (2.3)

which is identified with the temperature of the dual N = 4 SYM theory. Further the

coordinates {t, ~x} are identified with the coordinates of the gauge theory. The string

coupling constant is related to the SYM ’t Hooft coupling constant through3

λ = g2
YM
Nc = 2πgsNc . (2.4)

The background D3-brane solution also has a (constant) dilaton and a Ramond-Ramond

field, whose precise form are not needed in the following.

Introducing Nf D7-branes into the geometry above corresponds to coupling Nf funda-

mental hypermultiplets to the original SYM theory [17]. Before the decoupling limit, the

branes are oriented in the following array:

0 1 2 3 4 5 6 7 8 9

D3: × × × ×
D7: × × × × × × × ×

(2.5)

This configuration is supersymmetric at zero temperature, which ensures stability of the

system. After the decoupling limit, the D7 branes wrap an S3 inside the S5 of the back-

ground geometry. Adapting the S5 coordinates to this embedding, we write

dΩ2
5 = dθ2 + sin2 θ dΩ2

3 + cos2 θ dφ2 (2.6)

3Note that we are using the standard D-brane convention here which differs from that of the usual

quantum field theory literature. As explained in appendix D of [7], λ = λQFT/2.

– 4 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
2

in (2.1). Defining χ = cos θ, we describe the D7-brane embedding as: φ = 0, χ = χ(ρ).

The derivation of the equations of motion for the D7-brane profile χ(ρ) and the gauge

field on their worldvolume At was discussed in [13]. Here we will review a few salient points

and refer the interested reader to [13] for more details. The DBI action of the D7-branes

may be written

ID7 = −NfTD7

∫

dt d3x dρ dΩ3

(u0ρ)
3

4
f f̃(1 − χ2)

√

1 − χ2 + ρ2χ̇2 − 2f̃

f2
(1 − χ2) ˙̃At

2
, (2.7)

where the dot denotes differentiation with respect to ρ and we have introduced the di-

mensionless gauge field Ãt [13]. The asymptotic form is determined by the gauge field’s

equation of motion (eq. (2.11) in [13]) as

Ãt =
2πℓ2s
u0

µq −
d̃

ρ2
+ · · · , (2.8)

where the constant µq is the quark chemical potential. The dimensionless constant d̃ is

related to the vacuum expectation value of the quark number density operator with

nq =
1

25/2
NfNc

√
λT 3 d̃ . (2.9)

The equation of motion for χ (eq. (2.17) in [13]) implies that the D7-brane profile behaves

asymptotically as

χ =
m

ρ
+

c

ρ3
+ · · · , (2.10)

where the dimensionless constants m and c are proportional to the quark mass and con-

densate, respectively [6, 7]. In particular, m = M̄/T where

M̄ =
2Mq√
λ

=
Mgap

2π
(2.11)

is (up to a factor) the meson mass gap Mgap at zero temperature [18].

As only ∂ρÃt enters the action (2.7), d̃ is a conserved integral of motion and gauge

field equation (Gauss’ law) yields

∂ρÃt = 2d̃
f
√

1 − χ2 + ρ2χ̇2

√

f̃(1 − χ2)[ρ6f̃3(1 − χ2)3 + 8d̃2]
. (2.12)

Substituting this expression into the equation of motion for the profile χ then gives

∂ρ

[

1√
∆

ρ5f f̃(1 − χ2)χ̇
√

1 − χ2 + ρ2χ̇2

]

= − 1√
∆

ρ3f f̃χ
√

1 − χ2 + ρ2χ̇2

[

3∆(1 − χ2 + ρ2χ̇2) − ρ2χ̇2
]

. (2.13)

where ∆ is given by

∆ =
ρ6f̃3(1 − χ2)3

ρ6f̃3(1 − χ2)3 + 8d̃2
. (2.14)
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2.1 Black hole embeddings

A key point for the following analysis is that if nq 6= 0 (i.e., d̃ 6= 0) then the only physically

consistent embeddings for the D7-branes are black hole embeddings [13, 14]. Simply stated,

a nonzero density of quarks is dual to a worldvolume electric field, i.e., a nonvanishing ˙̃At.

In turn, this electric field can be interpreted as a finite number of (fundamental) strings

dissolved in the probe D7-branes. Since these strings cannot simply terminate, it is not

possible for the D7-branes to close off smoothly above the horizon.

Of course, the defining feature of the black hole embeddings is that the probe D7-branes

reach the event horizon at ρ = 1. We can only solve the profile’s equation of motion (2.13)

using numerical techniques. Generally we integrate out from the horizon with the following

boundary conditions

χ(ρ = 1) = χ0 , ∂ρχ(ρ = 1) = 0 . (2.15)

The series expansion of χ around ρ = 1 takes the form4

χ = χ0 −
3χ0(1 − χ2

0)
3

4(d̃2 + (1 − χ2
0)

3)
(ρ− 1)2(2 − ρ) +O((ρ− 1)4) . (2.16)

Thus as χ0 approaches 1 (from below) with d̃ fixed, the profile develops a long narrow

throat extending out from ρ = 1 — as illustrated in figure 3.

The black hole embeddings were so named because the induced geometry on the D7-

brane worldvolume is a black hole geometry. The area of the induced horizon, which is

proportional to (1−χ2
0)

3/2, controls the lifetime of excitations on the brane [9]. As discussed

below, tuning χ0 close to 1 will allow us to produce long-lived quasiparticles. However, in

the following, we will want to compare the lifetimes of various quasiparticles while keeping

the quark mass fixed. Recall that the latter is determined from the asymptotic form of

the profile (2.10) at large ρ. Implicitly then with our numerical approach, the constants m

and c in (2.10) are functions of both χ0 and d̃. Hence adding the parameter d̃ is the key

to allowing us to vary χ0 (i.e., the quasiparticle lifetimes) while holding m (i.e., the quark

mass) fixed.

We note that the zero-temperature limit of these configurations is a subtle one [19].

2.2 Minkowski embeddings

We comment briefly on Minkowski embeddings with d̃ = 0 with reference to the limiting

velocity discussed in the introduction. To describe these embeddings, we make the following

coordinate transformation [7]

ρ2 = r2 +R2 , χ = R/ρ , (2.17)

whereby the equation of motion for the profile R(r) becomes

∂r

[

r3f f̃ ∂rR
√

1 + (∂rR)2

]

=
8 r3R

(r2 +R2)5

√

1 + (∂rR)2 (2.18)

4In the numerics, we used this expansion to specify the boundary conditions slightly away from ρ = 1.
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Figure 3: The profile χ as a function of ρ for different values of χ0, d̃ with fixed m = 4.56. To keep

m fixed, d̃ is decreased as χ0 increases . The black line represents the profile for the corresponding

Minkowski embedding with d̃ = 0.

where f and f̃ are defined as in (2.2) but now expressed in terms of r and R using (2.17).

The boundary conditions specified at r = 0 (i.e., χ = 1) are: R = R0, ∂rR = 0 with R0 > 1.

Near the axis r = 0, the embedding has an expansion.

R = R0 +
r2

R0(R8
0 − 1)

+
5R16

0 + 5R8
0 − 3

3R3
0(R

8
0 − 1)3

r4 +O(r6) , (2.19)

which, as expected, clearly illustrates that r = 0 is the point of closest approach between the

D7-brane and the horizon. As commented above, the meson excitations on the Minkowski

embeddings were found to approach a limiting velocity at large momentum [7]. This

velocity is given by

vlim =

√

− gtt

gxx

∣

∣

∣

∣

ρ=ρmin

=
f

f̃

∣

∣

∣

∣

r=0

=
1 − 1/R 4

0

1 + 1/R 4
0

. (2.20)

3. Meson spectral functions

A fruitful application of gauge/gravity duality techniques has proven to be the study of

thermal properties of the strongly coupled gauge theories through their finite-temperature

correlation functions [20]. In a holographic framework, the spectral functions are typically

easier to compute than the full correlators and the poles (and associated residues) of the

correlators are still reflected in the corresponding spectral functions. According to the

holographic dictionary, the poles are determined by the quasinormal spectrum of a dual

bulk field fluctuations, whose study is a technically challenging problem [21] — we begin

to address these calculations in sections 4 and 5. In contrast, the spectral function is given

by the imaginary part of the retarded correlator,R(ω,q) = −2 ImGR(ω,q) , (3.1)

and is determined by appealing to standard calculations of bulk field correlators [22].

– 7 –
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The retarded correlators have poles in the lower half-plane of complex frequency, which

we may assume have the form

GR ∼ A

ω − Ω(q, α) + iΓ(q, α)
, (3.2)

where α represents any additional relevant parameters, e.g., the temperature or quark

density. From such a pole, the spectral function receives a contributionR(ω) ∼ 2AΓ

(ω − Ω)2 + Γ2
. (3.3)

Thus in the vicinity of ω = Ω, the spectral function has a peak characterized by a width

Γ. A quasiparticle interpretation can be given to the peak if it satisfies the Landau crite-

rion: Γ ≪ Ω. Hence the masses and lifetimes of quasiparticles can be extracted from the

holographic spectral functions.

The spectral function R(ω) also has a characteristic form in the ‘high-frequency’ limit.

This behaviour is determined by the leading short-distance singularity

lim
(t2−x2)→0

〈O(t,x)O(0)〉 =
A

|t2 − x2|∆ + · · · , (3.4)

where ∆ denotes the dimension of the operator O and A is a dimensionless constant. A

Fourier transform then leads to the following contribution to the spectral functionR(ω) ∼ A (ω2 − q2)∆−2 . (3.5)

Note that this high-frequency tail is Lorentz invariant and shows no indications of a limit-

ing velocity. This should be expected as it describes the very high-energy/short-distance

behaviour, which is independent of temperature [9].

In the present study on the gravity side, the D7-brane embeddings extend through the

event horizon of the AdS5 black hole, which describes the theory at finite temperature.

As indicated by the name ‘black hole embedding’, the metric induced on the worldvolume

of the D7-branes is itself a black hole. Even though the latter geometry does not obey

Einstein’s equations, the analysis of the hydrodynamic physics found previously for bulk

fields, e.g., [20], is readily transferred to the worldvolume fields on the D7-brane [9] and

hence we can examine the spectral function for various mesonic operators following the

techniques introduced in [23].

Here, the area of the horizon induced in the worldvolume geometry controls how quickly

excitations on the D7-branes are absorbed by the black hole. This absorption rate then

determines the lifetime or width of the corresponding quasiparticles in the dual gauge the-

ory. For a black hole embedding with a large horizon area (e.g., the typical situation in

the high temperature phase when d̃ = 0), one expects to find that Γ ∼ Ω [10]. Further the

corresponding spectral functions are essentially featureless beyond exhibiting the charac-

teristic high-frequency tail (3.5). However, following the discussion in the previous section,

by tuning χ0 close to 1, the horizon area and consequently the quasiparticle widths shrink.

Hence this tuning can bring us into a regime where the spectral functions display distinct

– 8 –
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peaks with Γ ≪ Ω [15]. We re-iterate that having the freedom to independently tune both

d̃ and χ0 is the key to producing these small widths while holding m (i.e., the quark mass)

fixed.

In the following, we calculate the spectral densities for the flavour current Jµ which is

dual to the worldvolume gauge field Aµ on the supergravity side [13]. These calculations

are a simple extension to finite spatial momentum of the spectral function calculations

appearing in [15]. We begin by writing the full gauge field as5

Âµ(ρ,x) = δt
µ Ãt(ρ) +Aµ(ρ,x) . (3.6)

Here Ãt denotes the background gauge field (2.12) producing the finite quark density, while

Aµ denotes a fluctuation. For simplicity, we assume here that Aµ only depends on ρ and

the Minkowski coordinates (and not the internal coordinates on the S3). To determine the

linearized equations of motion for the fluctuations, we expand the DBI action to quadratic

order. The resulting gauge field lagrangian is

L = −1

4

√

|G|
[

GµαGβγFαβFγµ − 1

2
GµνGσγFµνFσγ

]

, (3.7)

where G = g+ F̃ being the sum of the background metric and background electromagnetic

field. Note that the last term does not vanish since G is no longer a symmetric matrix

in general — see comments below, however. The linearized equations of motion for A are

then

∂ν

(

√

|G|
[

GνµGσγ +
1

2
G[νσ]Gµγ

]

Fµγ

)

= 0 . (3.8)

Next we consider the Fourier transform of Aµ

Aµ(ρ,x) =

∫

d4k

(2π)4
eik·xAµ(ρ,k) . (3.9)

If we restrict the momentum vector to (ω, q, 0, 0), the components of the electric field are

given by

Ex = ωAx + qA0 , Ey,z = ωAy,z . (3.10)

In the analysis which follows in this section, we will focus on the transverse fields Ey,z

both of which we will denote by ET . The analysis for the longitudinal component Ex is

more involved on two counts. First, it is only for this mode that the second term in the

lagrangian (3.7) contributes to the equation of motion. The second complication is that, in

fact, the quadratic lagrangian above is inadequate to describe these modes. This is because

with the background field F̃ρt, these longitudinal modes mix with the scalar fluctuations

δθ. Hence we leave the complete analysis of these coupled modes for the future.6

The linearized equation of motion for ET can be written as

∂ρ(F∂ρET ) +G

(w2 f̃2

∆f2
− q2)ET = 0 (3.11)

5Implicitly we are working with the dimensionless gauge field scaled as in [13].
6These complications are not evident from the analysis in [15] due to simplifications at q = 0, for e.g.,

δθ only mixes with A0.

– 9 –
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with

F =
ρ3f√

∆

(1 − χ2)2
√

1 − χ2 + ρ2χ′2
, G =

8
√

∆

ρ

f

f̃

√

1 − χ2 + ρ2χ′2(1 − χ2) . (3.12)

Here we have also introduced w ≡ ω/(2πT ) and q ≡ q/(2πT ). Further recall that ∆ is

defined in (2.14) and goes to unity when d̃ = 0. The retarded Green function for ET is

given by

GR =
NfNcT

2

8

[

F

ω2

∂ρET

ET

]

ρ→∞

. (3.13)

Now the spectral function is defined asR(ω, k) = −2ω2 ImGR , (3.14)

where the extra factor of ω2 is introduced to produce the spectral function for Ay,z —

compare to (3.1). Defining F =
Fw2

∂ρET

ET
, (3.15)

it follows from (3.11) that

∂ρF+
w2

F
F2 +G

(

f̃2

∆f2
− q2w2

)

= 0 . (3.16)

Thus we have R(ω, q) = −NfNcT
2

4
w2 ImF(ρ→ ∞) . (3.17)

We solved the above equation numerically taking ET (ρ) = (ρ − 1)−iwe(ρ) where e(ρ) is

regular at the horizon with the boundary conditions: e(1) = 1, ∂ρe(1) = iw/2. This impliesF(1) = −4i
√

(1 − χ2
0)

3 + d̃2/w.

Figure 4 illustrates7 the behaviour of the spectral functions at q = 0 – this is repro-

ducing the results given in [15]. As discussed above, to construct the background D7-brane

embedding, we are varying the variables χ0 and d̃ while keeping fixed the asymptotic mass

(or m). For the cases illustrated in figure 4, we fixed m = 4.56 (to within about 0.25% ac-

curacy). These examples explicitly show that as the quark density or induced horizon area

increases, the widths of the quasiparticles increases while their positions remains essentially

fixed. The figure also shows the positions of the corresponding mesons on the Minkowski

embedding with m = 4.56 (and d̃ = 0) — these masses were determined numerically, as

described in [7].

3.1 Dispersion relations

Now to study the dispersion relations, we consider the spectral functions with finite spatial

momentum q. We focus our attention on the first few peaks as these lowest lying resonances

are the most prominent at q = 0. At least for a certain range of q, the spectral functions

7In all our plots in the following, the spectral function R is in units of
Nf NcT2

4
.

– 10 –
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Figure 4: Spectral functions for m = 4.56 and q = 0. The vertical black lines correspond the δ-

functions appearing for the Minkowski embedding. The latter appear above atw = 4.56, 7.89, 11.16,

respectively. The green line is for d̃ = 0.06, χ0 = 0.99755, red for d̃ = 0.15, χ0 = 0.99394 and blue

for d̃ = 0.25, χ0 = 0.99.

allow us to reconstruct both Ω(q) and Γ(q) for these quasiparticles. As might be expected,

we will find that beyond a certain qcrit, the corresponding poles (3.2) have moved too

far away from the real axis to allow us to identify individual resonances in the spectral

functions. We will also be able to estimate the residue A(q) in the regime q < qcrit.

Figure 5 illustrates the typical behaviour of a spectral function as the momentum is

increased. In general, one can observe that the quasiparticle peaks are moving to larger

values of w as q increases. Similarly, one would say that increasing q causes the individ-

ual peaks to become diminished while the background increases. In particular, the high

frequency tail (3.5) in the present case isR(w) = 4π (w2 − q2) (3.18)

with ∆ = 3 [9]. In the figure 5, we see that fairly quickly as the momentum is increased,

the spectral function becomes well modeled by this tail alone. In fact in the last two plots

with q = 100 and 140, the rise in the spectral function cannot be distinguished from this

tail at the scale used there.

Energies, Ω(q): to make our discussion more quantitative, we followed the positions

Ωi(q) of the (first few) peaks as q increases for three different limiting velocities. The three

cases are summarized in the following table: The columns labelled Ω0 and Γ0 in table 1
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Figure 5: Spectral function versus w with d̃ = 0.25, χ0 = 0.99,m = 4.56 and increasing q, as

indicated. There are no visible peaks above q = 100. In each plot, the dashed grey line indicates

the high frequency tail (3.18) for w ≥ q.
vlim m d̃ χ0 Ω0 Γ0

I 0.995 4.56 0.25 0.99 4.52 0.072

II 0.651 1.50 0.0005 0.9995 1.37 0.002

III 0.343 1.32 0.0001 0.99975 1.03 0.001

Table 1: Parameters for cases I, II, III.

indicate the position and width of the first peak at q = 0, respectively, for each case. In

each of these cases, we chose Γ0/Ω0 ≪ 1 as this allowed us to follow the first few peaks to

much higher momenta. As we will see below, if one begins with broader peaks at q = 0 then

they dissipate more quickly as q is increased. As described above at (3.3), the positions of

such the peaks8 Ωi(q) should correspond to the real part of the position of a pole in the

corresponding retarded correlator.9

The resulting plots of Ωi(q) for these three examples are displayed in figure 6. Note

that figure 6 contains two plots which differ primarily in the horizontal scale for q because

while the peaks could be followed out to q ≈ 100 for case I (vlim = .995), they disappeared

around q ≈ 10 in the last two cases — see discussion below. In all three cases, the curves

8In the following, the subscript is i = 1, 2, 3 to denote the first three resonances in the spectral function.

Further we identify the position of the resonance with the condition ∂wR = 0 here.
9In the following discussion, we denote the position of the poles in the complex w-plane as Ω− iΓ. Hence

this usage differs from that in (3.2) or (3.3) by a factor of 2πT .
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Figure 6: The plot on the left shows the positions of the first three peaks for case I (see table (1))

as a function of q. Within our accuracy, these curves all asymptote to roughly w = 0.995q, which

corresponds to the black line. The plot on the right displays similar dispersion curves for all three

cases. The blue, red and green lines correspond to cases I, II and III, respectively.

Ωi(q) appear asymptote to the straight-line form:

Ωi(q) = vlim q+ ai +O(1/q) (3.19)

found analytically for the Minkowski embeddings in [12]. Further, as is implicit in our

notation, the asymptotic value of the slope ∂qΩi matches very well the limiting velocity

vlim calculated from the corresponding Minkowski embedding with the same value of m.

For vlim = 0.995, this is best illustrated in the left panel of figure 6. Figure 7 shows the

first peak for the three different cases fit with a straight asymptote with slope vlim, as

given in (1). This figure makes clear that the two cases with slower limiting velocities

approach their asymptotic behaviour (3.19) more quickly. We should comment that while

the limiting velocities in (1) gave a good fit to the asymptotic behaviour of these curves,

the accuracy of our numerical calculations was limited. The numerical error is estimated

as follows: Using vlim ≈ R4
0−1

R4
0+1

, we have ∆vlim = 8∆R0
R3

0

R8
0−1

vlim. Using ∆R0 = ±0.01, this

gives ∆vlim ≈ ±0.00004,±0.008,±0.01 for vlim = 0.995, 0.651, 0.343 respectively. Hence we

are being slightly extravagant in quoting three significant figures for the latter two cases.

We also note that we found that the constants ai did not seem to match well with the

analytic expressions given in [12] for the Minkowski embeddings.

Widths, Γ(q): next we wish to examine how the widths of the quasiparticles evolve with

increasing momentum. For this purpose, we list four new trial cases in table 2. Note that

the initial widths Γ0 are tuned to be roughly equal in cases IV, V and VI, which were also

chosen to match the same values of vlim as appeared in cases I, II and III in table (1). We

have also chosen case VII with vlim = 0.651 but tuned so that the ratio Γ0/Ω0 is roughly

the same as in case IV with vlim = 0.995.

As described at (3.3), near the location of an isolated peak in the spectral function,

we expect that the spectral function can be approximated asR ≈ 2AΓ

(w− Ω)2 + Γ2
. (3.20)
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Figure 7: The points above correspond to positions of the first peak from the spectral function

for each of the cases in table (1). The corresponding straight lines, which match the asymptotic

behaviour in each case, have slopes vlim = 0.995, 0.651 and 0.343, respectively. The dashed black

line has slope one, corresponding to null four-momenta: Ω2 − q2 = 0.

vlim m d̃ χ0 Ω0 Γ0

IV 0.995 4.56 0.15 0.99394 4.52 0.044

V 0.651 1.50 0.01 0.99 1.37 0.04

VI 0.343 1.32 0.0033 0.991 1.03 0.042

VII 0.651 1.50 0.004 0.996 1.37 0.015

Table 2: Parameters for cases IV, V, VI, VII.

From this form, we can derive the following expression for the width of the peak (i.e., the

imaginary part in the position of the corresponding pole):

Γ ≈
√

−2
RR′′

∣

∣

∣

∣

∣w=Ω

, (3.21)

where ′ denotes differentiation with respect to w. In the above expression, we define w = Ω

as the point where ∂wR = 0. The results for the width of the first peak as given by this

formula are shown in figure 9 (for each of the four cases in table (2)). Note that each of

these curves shows a dramatic increase in Γ as q increases from zero. This gives the first

hint that we should find a certain maximum value of q beyond which the quasiparticles

do not exist. Certainly this is observed, e.g., in figure 5 where the peaks in the spectral

function are simply washed out at large q.
Note however, that if the spectral function contains a significant background contribu-

tion near w = Ω, then the above formula (3.21) will tend to overestimate the true value of Γ.

In particular, we can seek to improve the approximate form of the spectral function (3.20)
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Figure 8: A plot of the first peak in R (red) and the corresponding ∂3wR (blue) for case V withq = 0. This illustrates the positions of the frequencies w0, w0,± and wm,± discussed in the text.

∂3wR has be scaled by 1/200 in this plot.

in the vicinity of one of the peaks by also including the high frequency tail (3.18)R ≈ 2AΓ

(w− Ω)2 + Γ2
+ 4π(w2 − q2) . (3.22)

Now we observe, however, that by taking the third derivative, ∂3wR, the background in-

troduced by the tail in the above expression will be eliminated. Further the resulting

expression will have zeros at w0 ≡ Ω and w0,± ≡ Ω ± Γ and so in principle, the zeros of

∂3wR can be used to determine Γ. However, rather than working directly with these zeros,

we note that there are also a maximum and a minimum to either side of the central zero

at Ω. A straightforward calculation shows that these extrema occur atwm,± ≡ Ω ± δ Γ with δ =

√

1 − 2√
5
≃ 0.3249 . (3.23)

The above features are illustrated in figure 8. We can use these expressions to estimate

both the width of a given peak but also an error because our form (3.20) is not perfect. In

particular, we have

Γ̄ =
wm,+ − wm,−

2δ
∆Γ =

1

2δ
(wm,+ + wm,− − 2w0) . (3.24)

The results for the width using these expressions are also shown in figure 9. One can note

that again there is dramatic rise in Γ as q increases, again hinting at a qcrit. These results

for Γ̄ seem to agree fairly well with those originally derived with (3.21). However, this

agreement is not as good for larger values of q where the quasiparticle peaks are washed

out and ∆Γ is larger. In particular, as might be expected, (3.21) tends to give a larger

width than (3.24) in this regime.

In fact, the increase in the widths is only one of three effects leading to the dissolution

of the quasiparticle peaks in the spectral functions. The second effect which we consider

here is the decreasing separation of neighbouring peaks or poles along the real axis. As
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Figure 9: log(Γ/Γq=0) vs log(q+1). The continuous curves were obtained using the spectral plots

and formula (3.21). The blue, red, green and brown lines correspond to cases IV, V, VI and VII

in table (2), respectively. The points with ‘error bars’ were obtained using (3.24). The vertical

dashed lines within the shaded regions indicate the location where the zero wm,+ in ∂3wR is lifted.

The left extreme of the shaded regions correspond to q when w0+ is lifted while the right extreme

corresponds to q when w0 is lifted. The solid vertical lines indicate where a point of inflexion occurs

in the effective potential, as described in section 4. The arrows indicate where q = Ω.

shown in figure 9, one finds that ∆Γ from (3.24) also increases with increasing q. This

is indicating a greater asymmetry in ∂3wR around the position of the peak w0 ≡ Ω. Of

course, this is actually indicates that the form (3.22) is becoming a poor approximation for

the spectral function in the vicinity of the peaks. Essentially the problem is that assuming

that the peaks are isolated is incorrect in this regime. To illustrate this behaviour for case

VI, we show the ratio of the separation of the first two peaks to the sum of their widths in

figure 10. From our plot, we see that this ratio approaches one indicating that this first peak

is no longer isolated from the other quasiparticle peaks at higher w. The same behavior is

observed for the other cases. For cases IV, V, VII we have for q = 0, the ratio log(Ω2 −
Ω1)/(Γ̄2 + Γ̄1) = 2.54, 1.54, 2.36 respectively while the ratio near q where wm,+ becomes a

point of inflection becomes .28(q = 90), .40(q = 3.6), .36(q = 5) in the respective cases.
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Figure 10: Plot of log(Ω2−Ω1)/(Γ2+Γ1) for case VI. The central values arise from using Γ1,2 = Γ̄1,2

while the upper and lower ‘error’ bars are determined with Γ1,2 = Γ̄1,2±∆Γ1,2. The ratio approaches

one for larger q indicating that these resonances in the spectral function should not be considered

to be isolated peaks.

The first peak which we are following then loses its shape due to the encroachment of

the neighbouring peaks. The typical development as q increases is that first the zero at w0,+

is lifted. Next the maximum at wm,+ becomes a point of inflection and then is subsequently

lost. Finally, the zero at w0 itself lifted when it collides with w0,− (and simultaneously

with wm,−). The region where the first peak is losing its shape in this way is indicated

with the shading in figure 9 for each of the four cases. This dissolution of the first peak is

illustrated in detail for case V in figure 11. As shown, first w0,+ is lifted around q = 2.6.

This is followed by the maximum wm,+ becoming a point of inflexion around q = 3.7 and

finally w0 is itself lifted around q = 4.9.

Beyond the point where w0 is lifted, there is no (simple) way to use the spectral

function to follow the corresponding pole in the thermal correlator and certainly there is

no sense in applying the concept of a quasiparticle. One might use the lifting of the zerow0 as defining the value qcrit where the quasiparticles disappear. These momenta for each

of the four cases in figure 9 coincides to the extreme right of the corresponding shaded

region. We return to these issues in the discussion in section 6.

A clear trend that emerges from figure 9 above is that the value of qcrit increases

with increasing vlim. This is already clear in comparing the results for cases IV, V and

VI, all of which start with Γ0 ≃ 0.04. However, while vlim is certainly one parameter that

changes between these three cases, another parameter which distinguishes these three cases

is Γ0/Ω0. The latter increases significantly between these three cases while the limiting

velocity is decreasing and one might imagine that if the quasiparticle peaks begin by being

less well resolved, they should be washed out more quickly. Hence we also considered case

VII for which vlim = 0.651 and Γ0/Ω0 ≃ 0.01. So here the limiting velocity matches that in

case V (for which Γ0/Ω0 ≃ 0.03) but the ratio Γ0/Ω0 was tuned to match roughly that in

case IV (for which vlim = 0.995). In figure 9, we see that the width for case VII grows with
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Figure 11: The central plot shows the behaviour of Γ with q for case V as in figure 9. For each

point in this plot, we also show the corresponding spectral function R denoted by red and ∂3wR
denoted by blue. This typical example illustrates how the peaks lose their form with increasing q.q in close accord with that for case V. We note though that our estimates of qcrit for case

VII were slightly larger than those of case V. In any event, these results seem to indicate

that vlim is the dominant factor in determining critical momentum where the quasiparticles

disappear.

For comparative purposes, we also show in figure 12 the ratio of the widths of the first

two peaks in case VI, as calculated with (3.24). As the plot shows, the width of the second

peak increases more slowly than the first. For instance, Γ2(q)/Γ1(q) ≃ 4.3 at q = 0 but only

1.3 at q = 2.2. This behaviour is in fact typical for all of the cases which we studied here.

Residues, A(q): so far our discussion of the quasiparticle peaks has focussed on their

energy Ω and the width Γ, which correspond to the real and imaginary parts of the position

of a pole in the thermal correlator (3.2). Here we briefly turn to the residue A, as this

also determines the size of the peak corresponding to a given pole — e.g., for the canonical

shape (3.3), the maximum value of spectral function is: R(w = Ω) = 2A/Γ. Assuming

the peaks have this canonical shape, the residue can also be determined in a number
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Figure 12: The plot shows log(Γ2/Γ1) for the first two peaks in case VI. For these two peaks, Γ0

takes the values 0.042, 0.184 respectively. The first peak disappears at q ≈ 3 while the second peak

disappears at q ≈ 2.72.

of different ways from the spectral functions but we focus on the third derivative of the

spectral function following the above discussion for the form given in eq. (3.22). First, we

can relate A to the slope of ∂3wR at w = w0:

A1 =
Γ5

48
∂4wR ∣∣∣

∣w=w0

. (3.25)

This expression evaluated with Γ̄ from eq. (3.24) is shown in figure 13 for the four cases

in table 2. Alternatively, the residue A can be determined by the value of the extrema atw = wm,±:

A2,± = ±Γ4

48

(1 + δ2)4

δ(1 − δ2)
∂3wR ∣∣∣

∣w=wm,±

. (3.26)

Our first observation is that the results for all three of these expressions seem to agree quite

well. One might also note how similar the results are for cases V and VII, which both have

vlim = 0.651. The most significant effect apparent in figure 13 is that A decreases quite

rapidly as q increases. This effect is most dramatic in case IV where the results for A are fit

well by an exponential: A ≃ 140 exp[−0.077 q]. This rapid fall in A with increasing q was

the third effect which we identified as contributing to the disappearance of the quasiparticle

peaks in the spectral function.

4. Quasinormal modes

The basic features of the spectral functions are controlled by the analytic structure of

the corresponding retarded correlators in the complex frequency plane. Holographically,

these poles correspond to quasinormal modes of excitations in the black hole geometry

induced on the D7-brane [22, 24]. Investigating the quasinormal spectrum for the black
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Figure 13: The residue A calculated for the first peak in the four cases given in table 2. The

circles correspond to results for A1 in eq. (3.25), while the squares and diamonds correspond to

A2,± in (3.26), respectively.

hole embeddings of interest is a technically challenging problem which we intend to pursue

elsewhere [25]. However, as described in [9], some qualitative information can be inferred

from casting the relevant radial equations of motion in the form of a Schrödinger equation.

In particular, one naively expects that the appearance of quasiparticle peaks with Γ ≪ Ω in

the spectral function would correspond to metastable states supported by a local minimum

in the effective potential of the Schrödinger equation. Conversely, the absence of a local

minima could be expected to yield the non-existence of quasiparticles. In this section, we

apply this kind of qualitative analysis to the transverse vector and pseudoscalar fluctuations

of the D7-brane. These calculations allow us to gain some qualitative insight into the

quasinormal modes for these fields — see, e.g., [10, 26]. One might be tempted to apply

a WKB analysis in this framework to obtain some quantitative results as well, however, as

we describe in appendix A, such an approach will not yield reliable results.

Let us begin with (3.11), the equation of motion for the transverse vector, and follow

the approach described in appendix of D of [9]. Defining10 H0 = (f2F∆)/(f̃2G) and

ET = hψ, we find that choosing h = H
1/4
0 /F 1/2 recasts this equation into

− ∂2
R∗
ψ + V ψ = w2 ψ , (4.1)

10Recall that F and G are defined in (3.12) and ∆, in (2.14).
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shows the total potential V with q = 10 for the same range of parameters.

where R∗ ≡
∫

∞

ρ dρ̃/
√

H0(ρ̃) and the effective potential V is given by

V =
f2

f̃2
∆

[

− 1

Gh
∂ρ(F∂ρh) + q2]

= V0 + q2 V1 . (4.2)

Note that with the above definition for R∗, we have R∗ → ∞ at the horizon (i.e., ρ → 1)

and R∗ → 0 asymptotically (i.e., ρ→ ∞). We also note that the simple dependence of the

Schrödinger problem on the frequency and wave-number of the mesons. That is, w2 plays

the role of the effective energy while q2 appears as the coefficient of a new term V1 in the

effective potential. Further we observe that in the limit that ρ→ ∞, V1 → 1 and hence in

this UV regime, these two contributions can be recombined in the Lorentz invariant formw2 − q2.
We begin by illustrating the behaviour of V0 in figure 14. We might compare this to

the corresponding effective potential discussed for the Minkowski embeddings in [18]. Both

there and here, the effective potential rises to infinity for large ρ which simply reflects the

infinite gravitational potential of the AdS geometry. In the Minkowski case, there is also

an infinite barrier at ρ = R0 where the D7-brane embedding ends and so this potential

leads to a discrete spectrum of (stable) bound states. As described in section 2.1, the

D7-branes of interest here with d̃ have a narrow neck that extends down to the black hole

horizon at ρ = 1. As a result, the infinite barrier at ρ = R0 above, is reduced to a finite

barrier, as illustrated in figure 14. As a result, one’s intuition should be that the low lying

bound states for the Minkowski problem remain essentially unchanged but they are now

only metastable because they will slowly tunnel out through the potential barrier to the

horizon. Further as shown in figure 14, as d̃ increases (with m fixed), the height of the

potential barrier shrinks and so the decay rate of these metastable states will increase. Of

course, for highly excited states with w2 above the top of the barrier, the spectrum will be

completely changed and in particular, we do not expect to speak in terms of metastable

states.
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Figure 15: V − q2 vs ρ for case I (i.e., d̃ = 0.25 and χ0 = 0.99). The curves correspond to q = 0
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disappears.

When the meson states also have a finite momentum, we must also account for the con-

tribution q2 V1 to the effective potential. Given the expression in (4.2), one finds that this

term raises the effective potential by a finite amount are larger values of ρ. As illustrated

on the right in figure 14, while both the local maximum and minimum in the potential are

raised, the primary effect of increasing q is to raise the minimum relative to the maximum,

i.e., the barrier shielding the potential well from the horizon is reduced. This effect is also

illustrated in figure 15 where we have plotted V − q2 with changing q — subtracting q2
ensures that the asymptotic form of the resulting curves is fixed, as can be inferred from

the discussion below (4.2).

To summarize, recasting the equation of motion in the Schrödinger form (4.1) gives

an intuitive picture which yields the following key observations: For small q, the effective

potential has a large barrier, which is responsible for the metastability of the quasiparticles.

However, this barrier shrinks with increasing q which then explains why the decay rates of

the metastable states should increase as q increases. Further this barrier actually disappears

above some momentum which again points to a critical momentum qcrit beyond which the

quasiparticles disappear.

We can use this analysis to establish a quantitative criterion for this maximum mo-

mentum qcrit. Since our intuition is that metastable states exist because of the potential

barrier appearing in V , we propose to estimate qcrit as the value of the momentum at which

the barrier disappears and is reduced to a point of inflexion. We have shown these esti-

mates in figure 9 for the three cases described in table (2). It seems that for cases V, VI

and VII (with the smaller values of vlim), these estimates are well within the region where

the peaks are losing their canonical shape and in fact, are quite close to the point where

the zero at w0 is lifted. The latter was also suggested as a measure of qcrit in the previous

section. For case IV with vlim = .995, the result here gives a smaller value of q outside of
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Figure 16: This plot shows qcrit vs T/M̄ for ET . The blue, red and green points and curves

correspond to d̃ = 0.25, 0.0005 and 0.0001, respectively. Further the boxes surround the points

corresponding to cases I, II and III in table (1). The continuous curves come from fitting the data

points with the form exp[−8x]/x2.

the region where peak is losing its shape and so present calculation seems to underestimateqcrit. However, it still seems to coincide with the onset of the rapid rise in Γ. It seems

somewhat surprising though that the widths could still be relatively small after the barrier

in the effective Schrödinger potential had disappeared.

In any event, the advantage of the present approach to estimating qcrit is that it is

computationally simple and relatively inexpensive. For example, in figure 16, we used this

approach to determine the behaviour of qcrit as a function of T/M̄ . As T/M̄ essentially

fixes vlim, these results are again displaying the strong correlation between qcrit and the

limiting speed discussed in the previous section. In figure 16, the continuous curves were

constructed by fitting the data points with the form exp[−8x]/x2. Hence we find in the

zero temperature limit, qcrit ∝ (M̄/T )2 → ∞. Furthermore, in the limit that d̃ → 0 (and

hence Γ0 → 0), qcrit → ∞.

We close this section with a few technical comments. One may have imagined that the

decay widths would be calculable in the corresponding Schrödinger problem using a WKB

approximation. Such a calculation is outlined in appendix A. However, as also explained

there, this approach does not generally yield reliable results. The essential point is that for

the WKB approximation to be valid, the change of the momentum over a wavelength must

be small compared to the momentum itself. Unfortunately, in the examples considered

here, this condition in not met within the barrier making the WKB analysis unreliable.

Finally we comment briefly on the effect on the widths from adding angular momentum

on the internal S3. That is, all of mesons considered up to this point have been singlets
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under the internal SU(2)×SU(2) global symmetry of the gauge theory — this symmetry is

dual to rotations on the D7-brane’s internal S3. However, these states only correspond to

the lowest dimension operators in an infinite family of vector operators transforming in the

(ℓ/2, ℓ/2) representation of the internal symmetry [18]. So we wish now to consider states

with nonvanishing ℓ. In fact, we will turn to the pseudoscalar mesons at this point since

the analysis in this case is somewhat simpler. For non-zero ℓ and q, Aρ cannot generally

be set to zero [9] which complicates the analysis for the vector. However, adding angular

momentum to the pseudoscalar case is straightforward and so we consider this case here.

The equation of motion for the pseudoscalars, i.e., fluctuations in φ, can be written as

∂ρ(F∂ρ P) +G

(w2 f̃2

∆f2
− q2)P + ℓ(ℓ+ 2)H P = 0 , (4.3)

where the functions F,G,H are defined as

H0 =
ρ4f2

8f̃

1 − χ2

1 − χ2 + ρ2χ′2
, F =

ρ5f f̃χ2(1 − χ2)2√
∆
√

1 − χ2 + ρ2χ′2
, (4.4)

H2 = ∆
f2

f̃2
, H3 =

ρ2f2∆

8f̃(1 − χ2)
, G =

FH2

H0
, H =

FH3

H0
. (4.5)

It can be shown that the effective Schrödinger potential in this case can be written as [9]

V = V0 + q2 V1 + ℓ(ℓ+ 2)V2 (4.6)

= −H0

hF
∂ρ(F∂ρh) + q2H2 + ℓ(ℓ+ 2)H3 , (4.7)

where h = H
1/4
0 /F 1/2. Some examples of the effective potential are shown in figure 17.

The key feature which one observes from this plot is that introducing ℓ 6= 0 increases the

potential barrier. This is not surprising since the D7-brane embedding has a narrow neck

near the horizon, i.e., the S3 is small, and so this increase reflects an angular momentum

barrier for these modes. We also note that the plots of the potential for the vector meson

ET for ℓ = 0 are almost indistinguishable from those for the pseudoscalar even for non-zeroq. In fact the two potentials differ by less than 1% although their precise functional forms

are not identical.

5. Beyond q
crit

As we saw in section 3, the analysis of the spectral functions can only give limited infor-

mation about the dispersion relations. In particular, when the quasiparticles become too

unstable with increasing q, they no longer contribute characteristic features to the spectral

function which would allow us to infer Ω(q) and Γ(q). Of course, this simply indicates

that the corresponding pole in the thermal correlator (3.2) has moved down in the complex

plane, too far from the real axis to strongly influence the spectral function. The behaviour

of these poles can be followed to higher momenta in the present holographic framework

with a direct analysis of the corresponding quasinormal modes [21, 27, 28]. While we intend
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Figure 17: This plot is for the effective Schrödinger potential for the pseudoscalar field with

ℓ = 0, 1 and q = 0, d = 0.25, χ0 = 0.99. The higher potential is for ℓ = 1.

to pursue this problem elsewhere [25], here we will attempt to provide some qualitative

insight into the behaviour of the poles at higher momentum and also for the higher quasi-

normal modes, using the intuitive picture of the effective Schrödinger problem given in the

previous section.

Our intuitive picture will also be guided by a comparison with the results for the

R currents in N = 4 SYM at finite temperature. That is, we start by considering the

behaviour of the transverse vector modes of a Maxwell field in AdS5. A closely related

investigation of the longitudinal vector modes and a massless minimally coupled scalar

appeared in [27] and [28], respectively.11 The relevant equation of motion for the transverse

vector modes ET in AdS5 can be found in [9, 21] and can be written as

∂ρ

(

ρ3f∂ρET

)

+
8

ρ

f

f̃

(w2 f̃
2

f2
− q2)ET = 0 , (5.1)

where f and f̃ are defined above in (2.2). This equation of motion is equivalent to that

of the analogous modes of the D7-brane gauge field (3.11) with χ = 0 and d̃ = 0. Hence

using the results of section 4, eq. (5.1) is easily recast into the Schrödinger form

− ∂2
R∗
ψ + V (ρ)ψ = w2ψ , (5.2)

where R∗ =
∫

∞

ρ dρ̃/
√

H0(ρ̃) with H0(ρ) = ρ4f2/8f̃ . The wave-function has been defined

as ψ ≡ ET /h with h = (8ρ2f̃)−1/4 and the effective potential V (ρ) is given by

V (ρ) = V0 + q2 V1 =
f2

f̃2

[

3

32
ρ2f̃ +

5

8

1

ρ2f̃
+ q2 ] . (5.3)

11There is an erroneous claim in [27] that the results for the transverse vector modes should be precisely

the same as for that for the massless minimally coupled scalar field given in [28].
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Figure 18: The plot shows V − q2 vs R∗. Blue, red, brown and green are for q = 0, 10, 20, 30

respectively. The dashed lines indicate the lowest eigenfrequency obtained from the spectral function

at these q’s.
Again the effective potential in eq. (4.2) reduces to that above upon setting both χ and d̃

to zero. Figure 18 presents various plots of the effective potential versus the Schrödinger

coordinate R∗ for various values of q. In figure 20, we also compare this potential (5.3) for

the supergravity vector modes with that for the analogous D7-brane modes for different

values of the quark mass and d̃.

As noted above, [27, 28] presented an analysis of quasinormal modes for similar su-

pergravity fields in AdS5. Here in our preliminary analysis of the transverse vector, we

use only the spectral function techniques described in section 3 for the lowest lying modes.

The analogue of eq. (3.16) is given here by

∂ρF+
w2

ρ3 f
F2 +

8

ρ

f

f̃

(

f̃2

f2
− q2w2

)

= 0 , (5.4)

where F is defined in (3.15) with F = ρ3f . The boundary condition for regularity at the

horizon becomes F(1) = − 4iw and the spectral function is given by the asymptotic limit

in (3.17).

Next we can repeat the analysis of section 3.1 to extract Ω(q) and Γ(q) from the

spectral function — in particular, our results were derived using the structure of ∂3wR. The

behaviour of the lowest lying mode are plotted in figure 19. The most striking features

revealed there are a) the asymptotic velocity is precisely one and b) the width decreases

with increasing q. Hence there is a remarkable contrast between this behaviour for the

supergravity vector and that described for the D7-brane vector in section 3.1.

We should note that at q = 0 our approach here yields (Ω(0),Γ(0)) = (1.51, .85) while

the precise analytic results are known to be (Ωn(0),Γn(0)) = (n, n) [9]. Hence we have
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Figure 19: The energy Ω(q) and width Γ(q) for the lowest lying mode for the supergravity gauge

field. The black dashed line on the right corresponds to Ω = q.
an indication of the potential errors in our spectral function results. We should note that

an analytic expression for spectral function at q = 0 is also known [9] and our numerical

calculation of spectral function agrees well with this result. However, it is not surprising

that our technique for extracting the energy and width from R is giving imprecise results

here since we have Ωn(0) = Γn(0) and further ∆Ω ≃ Γn for the first few poles. We remain

confident that the qualitative behaviour appearing in figure 19 is correct. In particular,

precisely the same behaviour was first found for the supergravity modes studied in [27, 28],

e.g., see figures 3 and 4 in [28].

We would like to understand these qualitative features from the structure of the effec-

tive potential in the Schrödinger equation (5.2). As shown in figure 18, one of the interesting

features of V is that it develops a relatively flat plateau in the regime 0 < R∗ < 1, which

corresponds to large values of ρ. Further, calculating the real part of the effective energy

ΩS = Re(w2) = Ω2 − Γ2 — see appendix A — for the lowest lying level, we find that this

energy is just above the potential energy at the plateau. If we consider a WKB calculation

of the corresponding wave-function, our intuition is confirmed about both of the qualitative

features above. In particular, in this approximation, the amplitude of the wave-function

would be given by [30]

|ψ|2 ≃ 1

P (R∗)
=

1
√

ΩS − V (R∗)
(5.5)

where P (R∗) is the classical momentum of the particle (with energy ΩS) evaluated at the

position R∗. Hence the amplitude of the wave-function is largest on the plateau and so it

seems natural that the wave-function has its largest support in this region 0 < R∗ < 1. For

large ρ, we have R∗ ∼ 2
√

2/ρ and so the latter range corresponds to large ρ. Hence the

radial profile of the corresponding excitation has its support primarily in the region where

the geometry is very close to that of AdS5 and the redshift effects are minimal. Hence it is

not surprising that the asymptotic velocity of these excitations is one, i.e., the speed of light.

Quantitatively we may also observe from figure 18 that Vplateau ∼ q2 and so with a small

width, we naturally have ΩS ≃ Ω2 ≃ q2. Finally while Vplateau and ΩS are rapidly rising

with q, the value of the potential remains fixed at zero at the horizon which corresponds to

R∗ → ∞. Hence eq. (5.5) indicates that the relative amplitude of the wave-function at the
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Figure 20: The solid lines correspond to the effective potential in case I (left) and V (right) forq = 80 (blue), 90 (red), 100 (green). The dashed lines correspond to the analogous supergravity

potential in (5.3).

horizon is falling |ψ|2 ∼ 1/q. Hence it seems natural that the flux absorbed by the horizon

should also be decreasing and hence the width of the state would be decreasing.

In principle, one could verify this intuitive picture with more detailed calculations to

produce a better understanding of the precise normalization of the wave-function.12 How-

ever, we now wish to apply our newly gained intuition to infer the behaviour of the meson

dispersion relations at very large momentum. In figure 20, we compare the supergravity

potential (5.3) to that for the analogous vector modes on the D7-brane for two of the cases

(I and V) studied in section 3. In both cases, we are in a high-momentum regime whereq ≫ qcrit and so there is no evidence of the structure (i.e., a potential barrier and well in

front of the horizon) discussed in section 4. While the structure of the potentials in fig-

ure 20 differs for R∗ > 1 (i.e., deep in the bulk of the AdS5 black hole), they are essentially

identical for R∗ < 1 (i.e., in the asymptotic region). In particular, the effective potential

for the mesons also develops a plateau with Vplateau ∼ q2 in this region. Hence it is natural

to assume that at very high momentum, the poles characterising the thermal correlator for

the meson operators will display a behaviour very similar to that found in the supergravity

analysis. That is, Ω(q) should exhibit an asymptotic velocity of one at very large q and

the widths Γ(q) should decrease as q increases to very large values.

Hence we are led to conjecture that the full dispersion relations found by studying the

quasinormal modes dual to the meson operators might take a form as illustrated in figure 21.

In particular, the behaviour of the low-lying modes found for q < qcrit in section 3 should

not be indicative of the overall structure. If we consider higher modes, i.e., modes which

do not lie in the potential well of section 4, we expect that these modes will not exhibit a

linear dispersion relation with slope vlim in the q < qcrit regime as the low-lying modes do.

Rather their dispersion relations will directly approach a linear behaviour in the q ≫ qcrit

regime with an asymptotic velocity of the speed of light. Similarly their widths are likely

to be monotonically decreasing as found for the supergravity modes in [27, 28]. We have

12In the case of near-critical embeddings, a flat plateau in the potential produced similar effects in the

quasinormal spectrum at q = 0 [29].
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Figure 21: This plot shows possible behaviours of the dispersion relations beyond qcrit. The lowest

lying modes (red) exhibit vlim < 1 below qcrit but approach ∂qΩ = 1 in the regime q > qcrit. The

latter limiting behaviour may (dashed curves) or may not (dotted curves) exhibit ‘superluminal’

speeds, i.e., ∂Ω/∂q > 1. The higher modes (blue) directly approach the limit ∂qΩ = 1 in the regimeq > qcrit.
found some evidence of this qualitative behaviour for the higher modes from the spectral

functions but we do not believe our results are quantitatively precise. There remains

the interesting question of what should be the high-momentum behaviour of the poles

corresponding to the low-lying modes, i.e., those which exhibit vlim < 1 for q < qcrit. The

behaviour suggested in figure 21 is that beyond qcrit, Ω(q) should also reach vasym = 1 forq ≫ qcrit. However, we can only speculate on precisely how this should arise. One possibility

illustrated in figure 21 is that Ω(q) should rise up and asymptote to Ω = q, which would

be similar to the behaviour exhibited by the sound mode in [21] — see their figure 5. This

would require passing through a regime where ∂qΩ > 1, i.e., the group velocity appears to

be superluminal, but of course, this need not correspond to a violation of causality — for

example, see [31]. Another alternative also shown in figure 21 is that these modes approach

∂qΩ|lim = 1 asymptotically without passing through a regime with ∂qΩ > 1.

We add one further observation on the spectrum of the quasinormal eigenfrequencies.

The poles corresponding to the quasiparticles discussed in section 4 corresponds to modes

with support primarily behind the barrier in the effective potential (4.2). Further the

discussion here also refers to modes with support primarily in the asymptotic region of the

D7-brane. That is, the support of all of these modes is mainly above the narrow throat in

D7-brane geometry. However, at least in the regime q < qcrit, there should be additional

poles corresponding to quasinormal modes whose support is predominantly in front of the

potential barrier, i.e., in the narrow throat. These would be interpreted excitations of

the effective string gas that is modeled by the throat [14]. These would be expected to
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have Γ ∼ Ω and so would not lend themselves to a quasiparticle interpretation [4]. It

would also be interesting to understand the behaviour of these quasinormal modes and

their interplay with the modes with support above the throat as we move into the regimeq > qcrit. Certainly, as shown in figure 20, the structure of the effective potential differs

from that in the supergravity problem for large R∗ (small ρ), hence it could be that it still

supports an additional set of modes in this regime with distinct physical characteristics.

6. Discussion

In this paper, we have used holographic techniques to calculate the spectral functions

and to study the dispersion relations of meson quasiparticles moving through a thermal

plasma of a strongly coupled N = 2 super-Yang-Mills theory. The quasiparticle peaks

in the spectral functions arise from poles in the corresponding thermal correlator (3.2) at

Ω − iΓ in the lower half of the complex frequency plane. Considering the energy Ω and

the width Γ as functions of the spatial momentum q, the broad picture which emerged was

that there were two distinct regimes distinguished by a critical momentum qcrit. In the

low-momentum regime q < qcrit, the spectral function exhibited clear quasiparticle peaks.

By following their position and shape with growing q, we were able to estimate the the

dispersion relations, Ω(q) and Γ(q), for the low-lying resonances. In the high-momentum

regime q > qcrit, the poles have moved too far into the complex plane and no quasiparticle

peaks are evident in the spectral functions. However, we examined the effective Schrödinger

equation governing the dual quasinormal modes and provided some qualitative insight into

the dispersion relations in this regime.

One of our key results for the q < qcrit regime is that the quasiparticles approach the

same limiting velocity found for the case of stable mesons [7, 12]. This result emphasizes

that this limiting velocity will be a universal feature in any holographic model. While the

precise form of the limit may depend on the particular model, it arises from gravitational

redshifting in the background geometry, as indicated by (1.1). Hence it will apply for

any gauge theory excitations that have a dual description in terms of radially localized

modes in the dual geometry. So, for example, this robust feature would also apply in the

adjoint sector to ‘glueball’ excitations that are dual to a wavepacket of supergravity modes

localized in the radial direction.

Of course, not all excitations of interest in a holographic model need not be radially

localized. For example, massive quarks in the N = 2 super-Yang-Mills theory (with nq = 0)

are represented by extended strings stretching down from the D7-brane to the horizon in

the dual gravitational description. Of course, the same gravitational redshift is observed to

have interesting physical effects when these quarks are in motion — e.g., see [32]. Further,

using holographic Wilson lines, a similar effect was observed to lead to the dissociation of

a heavy quark bound state moving at a finite velocity through a strongly coupled N = 4

plasma [33].

The second interesting observation for the low-lying mesons in the q < qcrit regime is

that their widths show a dramatic increase as the momentum approaches qcrit. In our holo-

graphic gravity model, the rise in Γ is easy to understand. As observed for the Minkowski
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embeddings [7], with finite q, the excitations on the probe D7-brane feel an extra potential

which pushes the support of the radial profile of the mesons down to minimum radius

on the brane. Intuitively, this can be understood as when the momentum is introduced,

the brane fields carry extra local energy density and so feel a stronger gravitational force

pulling them towards the horizon. As described in section 2.1, we have destabilized the

mesons by introducing a narrow throat which extends down to the horizon from the point

where the brane would have otherwise closed off. Hence the additional potential due to the

momentum naturally pushes the meson fields down this throat making these states decay

more quickly. This intuitive picture can be made more quantitative with the Schrödinger

framework introduced in section 4. The latter approach also made clear that the poten-

tial barrier, which maintained the metastability of the quasiparticles, vanishes above some

momentum. The disappearance of the barrier in the effective potential provides a precise

mathematical criterion with which to define qcrit. While this is a natural definition, we

should add that the distinguishing momentum qcrit remains a rather qualitative concept

and another definition was also considered in section 3.

In the high-momentum regime, our qualitative investigation of the effective Schrödinger

equation suggests that the asymptotic velocity is vasym = 1 for q ≫ qcrit. Here the modes

should be radially localized but evade having a limiting velocity less than the speed of light

because they are not localized near the black hole horizon. Rather, our suggestion is that

as q increases to very large values, the support of quasinormal modes becomes increasingly

focussed at very large radius, i.e., towards the AdS boundary, where the gravitational red-

shift becomes vanishingly small. This conjecture is largely based on making an analogy

with similar supergravity fields for which some explicit results for the quasinormal frequen-

cies are known [27, 28]. The latter results further suggest that in this high momentum

regime the widths should decrease with increasing momentum. To clarify the details of

the behaviour in this high-momentum regime, one would have to examine the quasinor-

mal modes directly [25]. It would also be interesting to better understand the physical

differences between the present case and that with nq = 0 in which the mesons are display

vlim < 1 for arbitrarily large q.
Still given the present understanding, an interesting physical picture has emerged.

Namely, in the low-momentum regime, the quasiparticles are strongly coupled to the de-

confined plasma of the adjoint fields. The gravitational redshift leading to vlim < 1 is the

geometric description of this strong coupling. An interesting problem would be to map the

‘glue’ cloud associated with these moving mesons, e.g., along the lines of [34]. We expect

that the energy density of this halo must be rapidly increasing to maintain the meson’s

velocity at vlim < 1. However, in the high-momentum regime, the quasiparticles and the

adjoint plasma are no longer strongly coupled to each other and the meson excitations can

achieve the speed of light. Of course, the behaviour in this high-momentum regime restores

the intuitive picture that one might acquire from considering the theory at weak coupling,

namely, that at high momentum, the quasiparticles should be largely unaffected by the

surrounding plasma.

In the low-momentum regime, the methods which we applied in section 3 allowed us

to estimate not only the positions of the poles (from Ω and Γ) but also their residues
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A. The latter were found to decrease with increasing q, as illustrated in figure 13. As

noted in [35], the parameter dependence of A can be important in determining the overall

form of the spectral function and clearly here the fall in the residues plays a role in the

disappearance of the resonances in the spectral functions. However, one might note these

residues are indicative of the coupling of the relevant operator to the thermal bath, i.e., of

how effective the operator is in generating the relevant quasiparticle excitations. Hence for

the present purposes, we need not think of A as a physical characteristic of the quasiparticle

itself.13 In contrast, Ω(q) and Γ(q) certainly characterize the basic physical behaviour of

the quasiparticles. In particular, in order for a certain pole in the thermal correlator to be

considered a quasiparticle in the first place, it must satisfy the Landau criterion Γ ≪ Ω.

Intuitively, we may understand this requirement by observing that the corresponding wave

function has a factor exp[−iΩt − Γt]. Hence with Γ ≪ Ω, there are a large number of

oscillations before the excitation is damped out.

In section 3, we found another important reason that the quasiparticle peaks were

quickly absorbed into the background is that the spacing between neighbouring poles

shrinks with growing momentum, as is illustrated by the dispersion curves in figure 6. Cer-

tainly at a practical level identifying the peaks in the spectral functions requires Γ ≪ ∆Ω

where ∆Ω is the spacing between neighbouring poles (along the real axis). As illustrated

with figure 10 for case VI, the peaks are begin to coalesce at roughly the point where

they vanish from the spectral function. At this point, the poles of interest are not isolated

and rather there are a large number of poles with roughly equal spacings and similarly

growing widths, which produces some smooth continuum (rather than individual peaks).

A quasiparticle interpretation is inappropriate then. Instead the infinite collection of poles

is collectively generating the smooth background which remains in the spectral function.

It is interesting to consider how well the peaks of the spectral function were recon-

structed given the estimates we produced for the relevant parameters in section 3. Fig-

ure 22 shows a typical peak which corresponds to case IV with q = 50. Also shown is the

Breit-Wigner peak (3.3) reconstructed with various estimates of Ω, Γ and A, produced by

examining ∂3wR as described in section 3. While this reconstruction matches the shape

of the peak near the maximum quite well, there are two other notable features which are

quite apparent. First the reconstructed peak appears displaced slightly towards smallerw relative to where ∂wR = 0. Of course, this is to be expected since there is a rising

background that also contributes to the spectral function. The second feature, which we

found surprising, is that this background seems to be quite small. That is, the maximum

of reconstructed peak matches very well with the maximum value of the spectral function.

More generally, we found that using our parameter estimates to reconstruct the quasipar-

ticle peaks gave a background that was typically only between 10 and 20% under the top

of the peak.

Given the limitations in studying the spectral functions, it would also be very inter-

esting to investigate the quasinormal modes directly, following e.g., [10, 26]. While this

13However, this coupling may become physically relevant for a certain quasiparticle decay channel if in

the underlying theory the operator couples to other physical fields, e.g., photons [36].

– 32 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
2

50.0 50.1 50.2 50.3 50.4

100

200

300

400

Figure 22: The red curve shows the spectral function for case IV with q = 50. The blue region

shows the peak (3.20) as reconstructed with the parameters Ω, Γ and A. calculated in section 3.

The center (dashed) line in the shaded region uses (Ω,Γ, A) = (w0, Γ̄, A1). The bottom (solid)

boundary of the shaded region is generated with (Ω,Γ, A) = (w0, Γ̄ + ∆Γ, A2,+), while the top

(thick solid) boundary uses (Ω,Γ, A) = (w0, Γ̄ − ∆Γ, A2,−).q wqn w
0 1.031 − 0.042i 1.034 − 0.042i

0.5 1.085 − 0.05i 1.091 − 0.049i

1 1.227 − 0.072i 1.234 − (0.072 ± 0.001)i

1.5 1.408 − 0.112i 1.426 − (0.115 ± 0.001)i

2 1.596 − 0.164i 1.644 − (0.186 ± 0.004)i

2.2 1.671 − 0.187i 1.730 − (0.220 ± 0.010)i

Table 3: Quasinormal modes obtained as poles in the spectral function for case VI.

presents additional technical challenges, it would allow for a detailed verification of the

quasiparticle dispersion relations found here in the low-momentum regime but also to es-

tablish the behaviour conjectured for the high-momentum regime [25]. At this stage, we

would like to make the following observation. It is possible to extract the quasinormal

modes directly from the spectral function. If w = Ω − iΓ is a quasinormal mode, this will

show up as a pole in the spectral function R. Since we have an approximate idea about

the location of the peaks from the spectral functions as well as an idea about the widths,

we have a reasonable initial guess which can be fine-tuned to locate the pole. It turns out

that for larger q’s, the fine-tuning required increases. Table 3 is a comparison between this

method and the method of estimating parameters from ∂3wR for case VI.

As is clear from the table, for larger q the quasinormal mode analysis predicts a lower Γ.
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While we see a dramatic rise in the width Γ of quasiparticles in the present model,

it remains to understand if this increase is a universal feature which emerges in any holo-

graphic model. Of course, an even more important question, is whether or not such an

effect is realized in the strongly coupled quark-gluon plasma of QCD. Certainly both of

these questions deserve further investigation.

At present, investigating spectral functions with non-zero momentum is an important

direction of ongoing research [37, 38]. Only partial results are available since the existing

methods seem to be inadequate for this problem. Recent results, which generally use

the so-called potential approach, indicate the spectral functions flatten with increasing

momentum [37, 38] — an effect consistent with our present findings.

Of course, if these effects found here in our holographic studies are realized in QCD,

they would have interesting implications for experiments at RHIC and LHC. In particular,

as suggested in [12, 33], they could lead to a significant additional suppression of J/Ψ or

other heavy quark mesons with large transverse momenta. Certainly a critical momentum

where the quasiparticle widths rise dramatically would produce a dramatic effect. Another

potentially interesting effect was outlined in [36]. One distinct feature resulting from a lim-

iting velocity vlim < 1 is that the four momenta of quasiparticles become null at some point.

For example, if we drop the higher order terms in the asymptotic dispersion relation (3.19),

then the quasiparticle’s dispersion relation crosses the null cone at

Ω =
ai

1 − vlim

= q . (6.1)

Following the holographic techniques of [39], one then finds that this crossing of the null

cone produces a peak in photon production from charged quasiparticles [36]. Such a res-

onance would then be a distinctive experimental signature of vlim < 1. Of course, as

speculated in figure 21, the dispersion relations may cross the null cone twice and exhibit

a regime ∂qΩ > 1, which may produce further dramatic signals.

From (6.1), we observe that this enhancement is pushed to infinite momentum as vlim

approaches one. Hence, if vlim is still close to one at RHIC or LHC, this signal would only

appear at very large momenta. Further, if the quasiparticle width increases too quickly, this

enhancement in the photon production would likely be washed out. The point where the

quasiparticle ‘four-momentum’ is null is indicated in figure 9 for the four cases in table (2).

For cases IV, V and VI, one indeed finds that this null momentum seems to lie in the regime

where the width is growing rapidly, while case VII seems to present an exception to this

rule. Further as can be seen in figure 7 for the more stable cases presented in table (1), the

quasiparticle dispersion relations seem to cross the null cone well away from the maximum

momentum. Hence it seems this question also requires further study.
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A. WKB approximation

In this section, we outline how WKB calculations might be applied to produce an approx-

imate value for the quasinormal eigenfrequencies. Recall that these eigenfrequencies are

determined by solving the relevant wave equation with boundary conditions of an ingoing

wave at the horizon and of only the normalizable mode asymptotically [10]. In (4.1), the

relevant wave equation for the transverse vector modes has been caste into the form of a

one-dimensional Schrödinger with an effective energy

Eeff = ΩS − iΓS (A.1)

= w2 = Ω2 − Γ2 − 2iΩΓ .

The quasinormal eigenfrequencies correspond to the positions of the poles in the thermal

correlators and so we denote the eigenfrequency w = Ω − iΓ above in keeping with the

notation of section 3.

In a typical case of interest, the effective potential has a form as illustrated in figures 14

or 17, with a well that is separated from the horizon at ρ = 1 by a large potential barrier.

The relevant modes corresponding to metastable meson states are then bound states with

support primarily in the potential well but which slowly tunnel out through the barrier.

The idea then is to approximately determine Eeff for these modes using WKB techniques

— see, e.g., [30].

First the real part of the effective energy ΩS is obtained by fine-tuning ΩS so that

∫ R3

R2

dR∗

√

ΩS − V (R∗) =

(

n− 1

2

)

π , (A.2)

where R2, R3 are the classical turning points in the potential well where V = ΩS. The first

peak in one of the spectral functions would correspond to n = 1. Next within the WKB

approximation, the decay rate ΓS is defined as [30]

ΓS = N exp(−2

∫ R2

R1

dR∗

√

V − ΩS) . (A.3)

Here R1, R2 denote classical turning points in the barrier and implicitly ΩS denotes the

WKB energy eigenvalue determined by (A.2). The normalization constant N is given by

N−1 =

∫ R3

R2

dR∗√
V − ΩS

. (A.4)
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Figure 23: The validity of the WKB approximation can be tested by considering k′/k2 versus ρ.

These are plotted here inside the barrier for d̃ = 0.25, χ0 = 0.99. At the turning points a deviation

from unity is expected but significant deviations are seen well away from those points, making the

WKB approximation (A.3) unreliable.

Given these WKB results for the Schrödinger problem, we may use (A.1) to determine

the eigenfrequency for the corresponding quasinormal mode:

Ω2 =
ΩS

2

[

1 +
√

1 + Γ2
S/Ω

2
S

]

≃ ΩS

[

1 +
1

4

Γ2
S

Ω2
S

]

, (A.5)

Γ = ΓS/2Ω ≃ ΓS

2
√

ΩS

[

1 − 1

8

Γ2
S

Ω2
S

]

.

In the second of each of these expressions, we have presented the leading terms in an

expansion with ΓS/ΩS ≪ 1, which is a necessary condition for the validity of the WKB

approximation. The latter calculation focussed on the well and barrier appearing in the

effective potential V (R∗) while completely ignoring the horizon. In the results of, e.g.,

[9, 10, 21], one sees that for an effective potential is a monotonically rising function Γ ∼ Ω or

ΓS > ΩS . Clearly, the horizon has an important effect in determining the eigenfrequencies

and, in particular, the decay width in this situation. Hence one cannot expect that the

WKB calculations outlined above will be reliable in this regime. In particular, when the

barrier is getting small, the WKB calculation would yield an tunnelling rate that becomes

large but the precise value of ΓS would depend crucially on the structure of the potential

near and the boundary conditions at the horizon.

However, as discussed in section 4, there are additional subtleties in the WKB approx-

imation. For the WKB calculation of the tunnelling rate to be valid, the change of the

momentum over a wavelength must be small compared to the momentum itself. That is,

if we define k =
√
V − w2 under the barrier, then we must require [30],

|k′(R∗)|
k(R∗)2

≪ 1 . (A.6)
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Unfortunately, in the examples considered in the paper, this condition is typically

not satisfied for a large region within the barrier, essentially because the shoulders of the

barrier are too steep — e.g., see figure 23. This makes the WKB calculation (A.3) of ΓS

unreliable, in particular in the regime where Γ begins to increase dramatically. We have

done WKB calculations of Γ in various cases when Γ/Γ0 ∼ 1 and found the WKB results

agreed with those in section 3 to within roughly 15% despite the issues discussed above.

Note that the condition (A.6) is quite generally satisfied for the calculation (A.2) of ΩS ,

the real part of the effective energy. Hence in the regime ΓS/ΩS ≪ 1, the WKB approach

would still provide an accurate approximation for Ω ≃ Ω
1/2
S . Further, one can still gain

some qualitative insight into Γ by considering when the barrier disappears in the effective

potential, as discussed in section 4.
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